Fiber laser marker Y-Series
The powerful fiber laser markers in the Y-Series are ideally suited for industrial part marking. They are used in almost all metal and plastic processing industries for precise and efficient direct marking of parts and products: from automotive construction through medical and security technology to electronics.

All kinds of codes - QR codes, DMC / DataMatrix Codes, Barcodes, alphanumeric characters, logos and letterings are marked reliably and highly accurate with fiber lasers.

The vision system which can be optionally integrated in the marking unit, features markings in zero-defect quality and process reliability through automatic optical verification and validation steps. The Marking Field Calibration as well as parameter sets for optimizing marking speed, quality and accuracy allow optimum adaptation to the respective application.

The silent service providers for our promise of precision are IMP (Intelligent Mark Positioning) and Point & Shoot. The two vision systems ensure ultimate precision and repetition accuracy. In addition to drastically-reduced product scrap, the added value that these systems generate also includes greater economy and productivity.

HELP is a holistic vision-assisted laser marking process that offers part and mark validation prior and right after marking. HELP helps to avoid marking errors and is capable of validating laser contents right after marking. This is particularly important for users with strict quality and code integrity requirements.

The modular construction enables highest flexibility, application-specific configuration and easy integration in production lines and stand-alone systems.

The Y-Series includes 9 different fiber laser sources, spanning power and pulse width ranges on one modular platform.

Y.1000
The new Y.1000 offers the highest marking quality and speed, increased productivity and reliable product traceability and system uptime.

The small in size yet extremely powerful 100-Watt fiber laser marker applies crisp, clear marks on resistant materials that permanently withstand even the toughest conditions. This is why FOBA’s Y.1000 is specifically suited for the marking of automobile parts and aerospace components – such as engine and powertrain parts, transmission components, hard plastic and plastic products such as cable or extrusion parts – that are exposed to high stresses and strains.

In addition to the reliable marking quality, the fast line speeds meet the highest demands for increased throughput, manufacturing efficiency and productivity.

Fields of application:
Resistant materials that are exposed to high stresses and strains and permanently withstand even the toughest conditions

Want to know more about FOBA? – contact Raymax for advice, availability, and a quotation
The **Tangor** takes ultrafast technologies a step forward, providing unprecedented average power with an extremely short pulse duration housed in an ultra-compact footprint.

The **Tangor** brings industrial productivity to the most advanced ultrafast micro-processing applications. Its small size and complete computer control capability allows for easy integration in micro-processing systems.

Optional pulse duration adjustment and harmonic generation further extend the application range.

The **Tangor** is the world’s first industrial 100W femtosecond laser. This platform offers exceptional flexibility, high repetition rates and high pulse energies. Designed to meet both industrial and scientific requirements including 24/7 operation, with high yield and precision output.

The **Tangor** provides the shortest pulse duration in its class, giving rise to superior processing quality. Unique features of this new generation of ultrafast lasers: (1) Excellence in design, (2) High average power, (3) Burst Mode and (4) Optional green or UV output.

For the most demanding applications, ultrafast lasers offer unmatched benefits. They can process virtually any material without any heat dissipation, and therefore with an extremely high accuracy and quality. Suggested as suitable for scientific uses and manufacturing in microelectronics and medical device development and manufacture.

Femtosecond lasers have gained wide recognition as a versatile and high-quality tool for micromachining and laser ablations. Two major features have proved essential for quality micromachining:

- The high peak power allows machining of virtually any material, including copper, glass, ceramics - often difficult to process with lasers.
- The ultrashort pulse duration eliminates thermal effects, often responsible for unwanted features such as micro-cracks, molten debris.

Amplitude Systèmes range of ultrafast lasers are specifically designed to make the most of micromachining applications. They feature:

- Small size, low electrical consumption, high reliability in industrial environments
- Short pulse duration - thermal micromachining
- High average power for improved productivity

WHAT’S ON & COMING UP

NMW 9 – 11 May Sydney Olympic Park

Australian Institute of Physics – call for papers for World’s in Perth 9-13 December 2018

CAMS 2018 – call for papers on Advancing Materials and Manufacturing at University of Wollongong November 27-29

WHAT’S IN MY INBOX?

Antimicrobial resistance occurs when bacteria and viruses, once responsive to antimicrobial treatments like antibiotics, build up a resistance and then pass that resistance on to their next generation. This leads to ineffective treatments and more persistent infections, **AKA superbugs**. But to the rescue – well one possibility at least – Platypus milk!!! Check out the CSIRO blog!